	Typio	cally (Offer	ed	
	Sp	Śu	Fa	W	Prerequisites/
					Enrollment
					Requirements
ABE UNDERGRADUATE	CLASSE	S			
ABE 120, Microcomputing Applications – Introduction to	1		1		
computer concepts, file management, and Microsoft windows			•		
operating systems. In addition students will be taught the use					
of Microsoft Word, Excel spreadsheets, and PowerPoint					
presentations for business applications. (3 units, Online)					
ABE 170A1, Basic Concepts in Water-related Applications –	\checkmark	\checkmark	\checkmark		
This course develops an understanding of natural science					
concepts and ideas and how they can be used to understand					
and analyze processes and objects in the every-day world.					
Water is a central theme. Students examine how it is obtained,					
stored, distributed, used, polluted, and cleaned. They learn to					
estimate its quality, quantity, energy, and movement. It is a					
broad introductory course. Available also as honors, study					
abroad, and student exchange credits. (3 units, Online)					
ABE 170A2, Science, Technology, and Environment – The	\checkmark	\checkmark	\checkmark		
scientific method, technology, motion, energy, gases, heat,					
chemistry, electricity, and magnetism are covered in class					
lectures. In laboratories, students will use physical principles					
to assess environmental problems and technology: e.g., CAP					
water, air pollution, solar cookers, and water use in the arid					
southwest. Available also as study abroad and student					
exchange credits. (3 units, Hybrid)					
ABE 193, Internship – Specialized work on an individual basis,	\checkmark	\checkmark	\checkmark	\checkmark	
consisting of training and practice in actual service in a					
technical, business, or governmental establishment. (1-3 units)					
ABE 199, Independent Study – Qualified students working on	\checkmark	\checkmark	\checkmark	\checkmark	
an individual basis with professors who have agreed to					
supervise such work. (1-3 units)					
ABE 201, Introduction to Biosystems Engineering –			\checkmark		MATH 124
This course provides an introduction biosystems engineering					
with emphasis on biological laboratory skills and basic					
tabrication, foundations of modeling biological processes,					
team work and professional skills, and the societal and global					
context in which the profession is practiced. Discussion topics					
athics and the impact of engineering on society. Laboratory					
ethics, and the impact of engineering on society. Laboratory					
and fabrication, and biological consing. Presentations					
discussions, and writing exercises will provide communication					
experiences (2 units)					
ABE 205 Engineering Analytic Computer Skills – Introduction		1			College of Engineering
to Excel. Visual Basic in Excel. Access and Matlah with an	×	~			majors only
emphasis on flow charts granning regression if-then do					majors only
loops, statistics, functions and subroutines, and conving to and					
reporting results in Word: applications include biological					
energy, growth, and CO2 models. (3 units, Hybrid)					

ABE 220, Introduction to Computer Aided Design – Introduction to computer aided design concepts and techniques using AutoCAD. Two and three-dimensional drawing presentation, methods of graphical communications, data analysis, design synthesis and production methods. (3	~	✓ ✓	~	
ABE 221, Introduction to Computer Aided Design – Introduction to computer aided design concepts and techniques using Solid Works. Two and three-dimensional drawing presentation, methods of graphical communications, data analysis, design synthesis and production methods. (3 units, Online)	√	~	~	
ABE 270, Introduction to Biosensors and Mobile Health – Several types of biosensors have become quite commercially successful in the past couple of decades, including glucose meters, pulse oximeters, and pregnancy tests. Recently, more advanced types of biosensors are being investigated and commercialized, to detect pathogens from food/water as well as animals/humans, to provide comprehensive blood test at home, etc. Major breakthroughs in achieving high sensitivity and specificity have been achieved with the use of lab-on-a- chip and nanotechnology. Towards easy-to-use, handheld, and daily monitoring of health conditions at home, use of Arduino, Raspberry Pi, 3D printing, smartphone, and other wearable devices are being investigated. Together with cloud computing, these efforts constitute a novel concept of mobile health or mHealth, which will revolutionize the future of health care. (3 units)		✓ 		
ABE 284, Biosystems Thermal Engineering – This course provides an integrated introduction to basic thermal engineering topics. A structured problem-solving approach emphasizes the interrelated roles of Thermodynamics, Fluid Mechanics, and Heat and Mass Transfer relevant to real-world engineering analyses. (3 units)			~	MATH 129, PHYS 141
ABE 293, Introduction to Fabrication for Engineers – This course provides an integrated introduction to basic fabrication topics. An emphasis on the interrelated roles of precision measurement, materials selection and reading of technical drawings and specifications, to teach real-world engineering analyses of fabricated/manufactured objects, and the materials and processes used to make them. Students are presented with introductory skills and knowledge in fabrication, and will gain experience in handling and maintaining hand and power tools and equipment, basic fabrication methods, and safety in fabrication work place/environment. (1 unit)	✓ 		✓ ✓	
ABE 299, Independent Study – Qualified students working on an individual basis with professors who have agreed to supervise such work. Available also as honors credits. (1-3 units)	✓		~	

ABE 385, Precision Observation with Drones – Precision			\checkmark	
Observation with Drones is an introductory course about the				
practical aspects of small-scale multirotor unmanned aerial				
system with a strong emphasis on quadcopters. The course				
aims at introducing the students to the new and evolving field				
of small multirotor Unmanned Aerial Vehicles/Systems (UAV,				
UAS, Drones), their electrical and electronics subsystems, how				
they work, to size and build a small drone, add useful sensors,				
use the system for observing the physical and biological				
environment, and how to manage and process some of the				
most common data collected by drones.				
Upon completing this course, the student should become				
familiar with small drone technology, be able to understand				
their potentials and limitations, add different sensors, collect				
and analyze data with the drones.				
The course is aimed at all students with basic science and				
engineering knowledge and a desire to observe, remotely				
sense, and collect data about the natural environment with				
high precision. (3 units)				
ABE 393, Internship – Specialized work on an individual basis,	\checkmark	\checkmark	<	Adv. Standing;
consisting of training and practice in actual service in a				Engineering major
technical, business, or governmental establishment. Available				
also as study abroad and student exchange credits. (1-3 units)				
ABE 397A, Teaching Workshop – see SWES 397A				
ABE 399, Independent Study – Qualified students working on	\checkmark	\checkmark	\checkmark	Adv. Standing;
an individual basis with professors who have agreed to				Engineering major
supervise such work. Available also as honors, honors study				
abroad, and student exchange credits. (1-4 units)				
ABE 413, Applied Biostatistics – Introductory and advanced			\checkmark	
statistical methods and their applications in ecology. Focuses				
on how research design dictates choice of statistical models;				
explores principles and pitfalls of hypothesis testing. (3 units)				
ABE 422, Open-Channel Flow – see CE 422				NOT OFFERED AT THIS
		r		 TIME
ABE 423,* Biosystems Analysis and Design – Application of	\checkmark			Adv. Standing;
systems analysis to biologically-related problems; computer				Engineering major;
modeling and use of simulations, optimization methods,				Familiarity with
decision support systems. May be co-convened with ABE 523.				statistics
(3 units)				
ABE 424, Applied Cyberinfrastructure Concepts – see ISTA 424			\checkmark	
ABE 426,* Watershed Engineering – Design of waterways,			\checkmark	Adv. Standing;
erosion control structures and small dams. Methods for				Engineering or WSM
trequency analysis and synthetic time distribution of rainfall.				major or minor; CE 218
Methods for estimating infiltration and runoff from small				or AME 331
watersheds, flow routing and storm water management.				
Estimating erosion using the Revised Universal Soil Loss				
Equation. May be co-convened with ABE 526. (3 units)				
ABE 427, Computer Applications in Hydraulics – see CE 427				

ABE 428,* Control of Erosion Processes – According to the US	\checkmark		\checkmark	Adv. Standing;
environmental regulations, it is mandatory that everyone who				Engineering major;
disturbs the soil is responsible for the sediments generated				MATH 124 or MATH 125
from that site. For instance, knowledge of erosion/sediment				
processes and control is an important tool those days to avoid				
federal penalties. The course focuses on the types of soil				
erosion, factors affecting it, and how to estimate erosion				
rates. Also, the student will learn how to design erosion				
control practices, based on certain runoff. May be co-				
convened with ABE 528. (3 units)				
ABE 447,* Sensors and Controls – Principles of electric circuits.			\checkmark	Adv. Standing;
Selection, interfacing and calibration of digital and analog				Engineering major;
sensors to measure physical variables. Optical electrochemical				CHEM 151 and CHEM
and piezoelectric biosensors. Basic bioprocess control. May be				152 (or equivalent)
co-convened with ABE 547. (3 units)				
ABE 452,* Globalization, Sustainability, and Innovation –	\checkmark			Adv. Standing;
Globalization, sustainability and innovation constitute the				Engineering major
three principal forces that drive the world of the 21st century -				
- economically, politically, socially and culturally. Aimed at				
engineering and science students, the objective of the course				
is to foster among them global intelligence (or global smarts),				
defined as an inclusive and cross-disciplinary working				
knowledge of how the globe operates today - including (1)				
how global infrastructures in communication, transportation				
and information technology have transformed how nations				
and corporations conduct business, (2) how nurturing				
sustainability ensures competitive advantage while ignoring it				
imperils nations as well as the planet, and (3) how				
technological innovation is critical both in maintaining				
competitive advantage and in providing the essential				
sustainable solutions to many of our current global challenges.				
In a flat world, fostering global intelligence has become a vital				
component of a well-rounded engineering and science				
education. May be co-convened with ABE 552. Available also				
as study abroad and student exchange credits. (3 units)				
ABE 455,* Soil and Water Resources Engineering -			\checkmark	Adv. Standing;
Introduction to soil and water relationships, irrigation systems,				Engineering major;
irrigation water supply, irrigation management, and basic				Junior or Senior status;
designs. May be co-convened with ABE 555. (3 units)				CE 218 or AME 331
ABE 456,* Irrigation Systems Design – Design and operation of	\checkmark			Adv. Standing;
surface, sprinkler, and trickle irrigation systems based on	Odd			Engineering major; CE
economic and environmental criteria. May be co-convened	yrs			218
with ABE 556. (3 units)	-			
ABE 458,* Soils, Wetlands, and Wastewater Reuse –	\checkmark			Adv. Standing;
Water quality and system design for agricultural drainage and	Even			Engineering major; CE
waste-water systems. May be co-convened with ABE 558. (3	yrs			218 or AME 331
units)	-			

ABE 459,* Design of Onsite Wastewater Treatment and	\checkmark	\checkmark		Adv. Standing;
Dispersal Systems – This course will cover issues and concepts	Even	· ·		Engineering major;
relating to the design of domestic and small commercial onsite	vrs			Junior or Senior status
wastewater treatment and recycling systems. This course is	,			
typically offered every even spring semester. This course is				
typically offered every even spring semester. May be co-				
convened with ABE 559. (3 units, Online)				
ABE 467, Advanced Watershed Hydrology – see WSM 567				
ABE 475A, Physiology of Plant Production under Controlled				
Environment – see PLS 475A				
ABE 479,* Applied Instrumentation for Controlled	1			Adv. Standing;
Environment Agriculture – Students will learn principles,	Even			Engineering major OR
methods, and techniques related to the measurement and	vrs			PLS major or minor;
control of environmental factors affecting plant growth and	,			Junior or Senior status;
plants' surrounding climate under controlled environments.				MATH 113 and PHYS
Light intensity, light quality, temperature (air, plant), relative				102
humidity, carbon dioxide, water, air current, and related				
factors are important variables in controlled environment				
plant production systems to measure and control since they				
affect and determine plant growth and development and				
processes such as heating, ventilating and air conditioning,				
fertigation etc. Therefore, students will learn application of				
sensors, instrumentation and designing of a simple system to				
measure and control environments for plant production				
systems. May be co-convened with ABE 579. (3 units)				
ABE 481A,* Engineering of Biological Processes – see CHEE				
481A				
ABE 481B,* Cell and Tissue Engineering – Development of	\checkmark			Adv. Standing;
biological engineering methods including applied genetics,				Engineering major;
metabolic regulation, and bioreactors employed in industrial				CHEM 151 and CHEM
processes for manufacture of pharmaceuticals and in the				152
design of tissue engineered devices to replace normal				
physiological function. May be co-convened with ABE 581B. (3				
units)				
ABE 482,* Integrated Engineered Solutions in the Food-Water-			\checkmark	Adv. Standing;
Energy Nexus – Integrated engineered solutions in the Food-				Engineering major;
Water-Energy Nexus are transformational integrated designs				
drivers of change that are necessary to make feeding an				
increased global population this century possible,				
environmentally sustainable, and cost-effective. May be co-				
convened with ABE 582. (3 units)				
ABE 483,* Controlled Environment Systems – An introduction			\checkmark	Adv. Standing;
to the technical aspects of greenhouse design, environmental				Engineering major or
control, hydroponic crop production, plant nutrient delivery				minor; PLS major; Junior
systems, intensive field production systems, and post-harvest				or Senior status
handling and storage of crops. May be co-convened with ABE				
583. (3 units)				

ABE 485, Remote Sensing Data and Methods – This course	\checkmark		
provides an in depth overview of practical topics in land			
remote sensing with big data, data sourcing and provenance,			
characteristics, generating algorithms, data discovery,			
advanced analysis, and data limitations. Students will learn			
how to discover and acquire a variety of global to regional land			
remote sensing data, learn about the various			
sensors/platforms collecting these data, learn how to interpret			
and use these data emphasizing real-world applications and			
research topics.			
The course is aimed primarily at students of biosystems			
engineering, environmental sciences, and natural resources			
management, and aims at bridging the gap between the			
theoretical aspects of remote sensing and current Earth			
science data records, algorithms, and analytics.			
ABE 486,* Biomaterial-Tissue Interactions – Biomaterials and	\checkmark		Adv. Standing;
their applications; protein-surface and blood-biomaterial			Engineering major;
interactions, inflammation, wound healing, biocompatibility,			CHEM 151 and CHEM
implants, and tissue engineering. May be co-convened with			152
ABE 586. (3 units)			
ABE 487,* Metagenomics: From Genes to Ecosystems –		\checkmark	College of Science Junior
Environmental genomics is revolutionizing our understanding		•	or Senior with 2.0 GPA
of microbes from the environment to human health, towards a			or higher, or College of
holistic view of ecosystems or "One-Health". At its core are			Agricultural and Life
new molecular methods called metagenomics to sequence			Sciences Junior or Senior
DNA directly from an environmental sample, thus capturing			status with 2.0 GPA or
the whole microbial community and bypassing culture.			higher; MCB 416, ABE
Modern (Next-Gen) sequencing technologies offer vast new			201. MIC 205 are
datasets of short sequence reads representing these microbial			recommended
communities, however many hurdles exist in interpreting data			
with high species complexity and given specialized software			
for microbial metagenomic analyses. This course focuses on			
the science of metagenomics towards understanding (1)			
questions that metagenomics can address. (2) possible			
approaches for metagenomic sequencing and analysis, and (3)			
how genes, pathways, and environmental context are			
translated into ecosystem-level knowledge. This course			
alternates between traditional lectures and hands-on			
experience with programming, bioinformatics tools, and			
metagenomic analysis. The course concludes with several			
weeks of seminar-format discussions on current research in			
metagenomic data analysis and a final project of your choice			
analyzing real-world experimental data. May be co-convened			
with ABE 587. (3 units)			
ABE 488, Micro and Nano Transducer Physics and Design – see			
AME 488.			
ABE 489A. Fabrication Techniques for Micro and Nano Devices			
– see AME 489A.			
ABE 489B, Bio Micro/Nanotechnology Applications – see AME	1		CHEM 152 or MSE 110;
489B.	Ť		Basic familiarity with
			cells, proteins, and DNA
			– NOT OFFERED AT THIS
			TIME

ABE 492, Directed Research – Student will participate a	\checkmark	<	>	\checkmark	
faculty-led research within the University of Arizona as an					
individual or as a small group. The faculty member will					
provide clear objectives at the beginning of the class, and					
meet with the student on a regular basis to track his/her					
progress. Towards the end of the class, the student needs to					
make oral presentation(s) in laboratory meeting and submit a					
written report to the faculty member. Department Consent is					
required. (1-3 units)					
ABE 493, Internship – Specialized work on an individual basis,	\checkmark	<	>	\checkmark	Adv. Standing;
consisting of training and practice in actual service in a					Engineering major;
technical, business, or governmental establishment. (3-6					Junior or Senior status
units)					
ABE 496A, Seminar in Engineering Careers and Professionalism			\checkmark		Adv. Standing;
 The seminar will focus on employment in agricultural and 					Engineering major;
biosystems engineering and engineering professionalism.					Junior or Senior status;
Topics will include how to find a job (finding opportunities,					Concurrent enrollment
writing resumes, interviewing), continuing education					in ABE 498A
(professional societies, schools, self-learning) and engineering					
ethics. Presentations and discussion will provide					
communication opportunities. Students will be required to					
registrar for the Fundamentals of Engineering Exam (FE). (1					
unit)					
ABE 497C, Greenhouse Pest Management: Methods and					
Practice – see ENTO 497C					

ABE 498B, Senior Capstone: Biosystems Engineering Design II – A culminating experience for majors involving a substantive project that demonstrates a synthesis of learning accumulated in the major, including broadly comprehensive knowledge of the discipline and its methodologies. Available also as honors credit. (3 units)	✓				Adv. Standing; Engineering major; Senior status; ABE 498A; Students will be required to take the Fundamentals of Engineering Exam (FE)
ABE 499, Independent Study – Qualified students working on an individual basis with professors who have agreed to supervise such work. Available also as honors credit. (1-4 units)	\checkmark	~	✓	~	
AME 488,* Micro and Nano Transducer Physics and Design – Principles, design, and performance of micro and nano transducers. Designing MEMS to be produced with both foundry and nonfoundry processes. Applications of unique properties of micro and nano transducers for biological and engineering problems. Associated signal processing requirements for these applications. May be co-convened with AME 588. (3 units)	✓				Adv. Standing; Engineering major or (Plant Sciences, Environmental Science, or Environmental and Resource Economics major with Junior or Senior status); AME 250 and (ECE 207 or ABE 447); AME/ABE 489/589 Recommended
AME 489A,* Fabrication Techniques for Micro and Nano Devices – This course tackles the techniques for the design, fabrication, and testing of traditional microelectromechanical systems (MEMS) and nanodevices. Each student will be required to participate in weekly laboratory sessions, to keep a laboratory notebook, and to submit a project report (25% Honors final grade;15% Undergraduate final grade) focusing on the design, fabrication, and testing of a MEMS device. Honors students receive additional homework assignments typically involving derivation or proof of a theory presented in class. Additionally, Honors students are asked to complete an independent MEMS/NEMS design, while undergraduates can use an existing device design. Grading differences are reflected in the syllabus. May be co-convened with AME 589A. (3 units)			~		Adv. Standing; Engineering major or (Plant Sciences, Environmental Science, or Environmental and Resource Economics major with Junior or Senior status); ECE 207 or ABE 447; Completion of Laboratory Chemical Safety Course
AME 489A,* Bio Micro/Nanotechnology Applications – This course tackles the applications of modern micro/nano devices or systems including lab-on-a-chip, DNA/protein array, drug carriers and other therapeutic systems, neuroscience applications, and food/agricultural systems. Toward this end, three different topics will be covered in this class: (1) brief overview on modern micro- and nanofabrication technologies, (2) biophysics principles for analytes and its recognition, and (3) various sensing modalities specific to these systems. May be co-convened with ABE 589B. (3 units)					
CE 422,* Open-Channel Flow – [Usually offered every three semesters beginning Fall 2007] Differential equations governing unsteady flow in open channels. Simple surface waves in subcritical and supercritical flows. Introduction of kinematic, diffusion, and dynamic wave methods. Applications to reservoir routing, dam break flow, and overland flow. May be co-convened with CE 522. (3 units)	\checkmark		✓		Adv. Standing; Engineering major; CE 323 or consent of instructor – NOT OFFERED AT THIS TIME

CE 427,* Computer Applications in Hydraulics – Computer		<	Adv. Standing;
modeling of surface water hydrology, flood plain hydraulics			Engineering major; CE
and water distribution systems. Theoretical basis. Application			323 or consent of
and design studies. May be co-convened with CE 527. (3 units)			instructor
CHEE 481A,* Engineering of Biological Processes – To learn to		\checkmark	Adv. Standing;
apply to the design of biological systems principles of			Engineering major;
engineering, science and mathematics, including, but not			MATH 254 and MCB 182
limited to statistics, kinetics, sensors and bioreactor design			or MIC 205A or CHEE
and scale up. To explore and be familiar with the principal			450 or instructor
areas of biological engineering such as food process			consent.
engineering, tissue engineering, and other large-scale			
fermentation processes. May be co-convened with CHEE 581A.			
(3 units)			
ENTO 497C,* Greenhouse Pest Management: Methods and	\checkmark		Adv. Standing;
Practice – Pest management skills development in the			Engineering major or
Controlled Environment Agriculture Center (CEAC)			major/minor in AGTM,
teaching/research greenhouses, with hands-on assignments,			ENTO, PLS; Junior or
and group discussion covering pest management principles,			Senior status; PLS 217
methods, and current practice. May be co-convened with			
ENTO 597C. (3 units)			
ISTA 424, Applied Cyberinfrastructure Concepts – Students will		\checkmark	
learn from experts from projects that have developed widely			
adopted foundational Cyberinfrastrcutrue resources, followed			
by hands-on laboratory exercises focused around those			
resources. Students will use these resources and gain practical			
experience from laboratory exercises for a final project using a			
data set and meeting requirements provided by domain			
scientists. Students will be provided access to computer			
resources at: UA campus clusters, iPlant Collaborative and at			
NSF XSEDE. Students will also learn to write a proposal for			
obtaining future allocation to large scale national resources			
through XSEDE. (3 units)			
PLS 475A,* Physiology of Plant Production under Controlled	\checkmark		Introductory plant
Environment – Students will learn the major environmental			physiology course
factors affecting plant growth and development and will			
understand interactions between plants and their			
microenvironments, including light penetration and CO2/H2O			
diffusion. Students will learn energy and mass balance of			
leaves and canopy and correlate these phenomena with plant			
productivity and related plant physiological mechanisms.			
Lectures cover critical controlled environment issues and			
practices of plant production in greenhouse, plant production			
factory, tissue culture vessels and post-harvest storage, with			
an introduction to the current research status in these areas.			
This course will be offered in spring of even years. May be co-			
convened with PLS 575A. (3 units)			
SWES 397A, Teaching Workshop – The practical application of	\checkmark	\checkmark	
theoretical learning within a group setting and involving an			
exchange of ideas and practical methods, skills, and principles.			
(3-4 units)			
WSM 467 Advanced Watershed Hydrology – Advanced topics	\checkmark		WSM 460
in watershed hydrology; rainfall-runoff, infiltration, overland			

flow routing, sediment modeling, statistical analysis, and			
research methods in hydrology. (3 units)			